

by dumptruck_ds & iw
lango.lan.party@gmail.com
version 2.0.0
2020-12-28

Contents

Contents
What is progs_dump?
What can you do with progs_dump?

Acknowledgements

Installation

Spawnflags
Trigger Spawned Monsters
Appearance Flags

Monsters
Behavior Modifiers
Custom Monster Models
Custom Monster Sounds
pain_threshold
pain_target
monster_boss2
monster_oldone2
Enhanced Zombies
Monster Styles
Grunt styles
Enforcer Styles
Ogre styles
func_monster_spawner
info_monster_spawnpoint
misc_teleporttrain
Custom Monster Example

Items
Respawning Items
Custom Item Models
item_armor_shard
item_health_vial
item_backpack
item_key_custom
weapon_shotgun
Item Customization Table

Custom Sounds
Attenuation
play_sound_tiggered
play_sound
ambient_general

ambient_thunder
ambient_water1
ambient_wind2
ambient_fire

Custom Models and Sprites
misc_model

Enhanced Triggers
is_waiting
trigger_changelevel
trigger_heal
trigger_look
trigger_push_custom
trigger_monster_jump
trigger_take_weapon
trigger_setgravity
trigger_shake
trigger_usekey
trigger_void
trigger_cdtrack
trigger_changemusic
trigger_teleport
info_destination_random
info_teleport_changedest

Enhanced Platforms
func_new_plat

Elevators
func_elvtr_button

Misc Entities
trap_spikeshooter, trap_shooter, trap_shooter_switched
func_counter
func_oncount
func_door
func_explobox
func_fall
func_fall2
func_togglewall
func_train
func_laser
Lightning
gib_(classname)
monster_dead_(classname)
Worldspawn
light_candle

Ladders
trigger_ladder

Breakables
func_breakable

Effect Entities
play_explosion
play_spawnexpl
play_lavalsplash
play_brlight
play_dimlight
play_mflash
play_brfield
play_gibs
play_tele
func_bob
misc_bob

Lights
Switchable Light Styles
light_torch_small_walltorch

Particle Effects
misc_sparks
misc_particle_stream
func_particlefield
misc_particles
misc_particlespray

Cutscenes
trigger_camera
info_movie_camera
info_focal_point
info_script
info_script_sound
Creating a Simple Cutscene
Complex Cutscenes
Cutscene Best Practices

Rotation Entities
func_rotate_entity
path_rotate
func_rotate_train
func_movewall
rotate_object
func_rotate_door

Sample maps

Credits

QuakeC Sources

Maps

Appendices
Appendix A: Included Assets
Appendix B: Finding Custom Models
Appendix C: Development Folder

What is progs_dump?
progs_dump is a development kit for id software’s Quake. Its purpose is to give mappers more
creative options and “quality-of-life” improvements over the original “vanilla” version of the
game. At the same time, progs_dump tries to retain the look and feel of the original as much as
possible. The progs_dump dev kit has dozens of unique and powerful features that are
explained in this manual and in the included sample maps.

The devkit consists of two elements:

First, there’s the progs_dump “mod” folder. This holds all the sample maps, mapping assets,
source code and the documentation you are reading now.

The second element is the my_mod folder inside the mod_template.zip file. This is a
streamlined version of progs_dump with just the assets you need to make your mod.

The workflow is simple:

Use the progs_dump mod as a learning tool, then create your own Quake mod with the
my_mod folder as a base.

Your project should be released as a stand-alone mod and installed into its own folder
in the Quake directory NOT in progs_dump.

What can you do with progs_dump?
The devkit started as a simple project to add custom sounds and models to the game but has
grown into a powerful toolkit aimed at beginner and intermediate mappers. Most features are
from existing mods both old and recent, but there is a lot of new and unique code as well.

Features include:

Monster Customization:

Add custom sounds, skins, models, health, damage, names, obituaries and much more without
any coding required. This includes customizing monsters’ heads, gibs and projectiles. Grunts,
Enforcers and Ogres have multiple new attack options and we’ve added killable, gibbable
versions of the original Quake bosses as well. Rotfish will gib now. No other Quake mod allows
this amount of customization in such an easy way.

Quality-of-Life Features:

Trigger spawned monsters, continuous monster spawning and random monster spawning.
Respawn items and suspend them in mid-air. Add custom backpack pickups, drag and drop
gore decorations and create visual effects like explosions and lightning effects. Custom models,
sprites and sound effects. Multiple targets and targetnames, dormant triggers, enhanced
platforms and more.

Unique new features like trigger_look, sight_trigger, pain_target, Doom style door behaviors and
item_key_custom.

Mission pack additions like custom gravity triggers, rotating entities, candles and elevators.

Enhanced teleporters with random destinations, monster only options, changeable destinations
and more.

Popular requests like ladders, cutscenes and breakables are included. In fact, there are two
styles of breakable. An “easy” method and a completely “custom” method.

Collisions for most objects are disabled in noclip making testing and reviewing your level a bit
easier.

Bug fixes

Traditional fixes to the Shambler’s collision during combat, the Rotfish “kill count” bug, door
unlock sounds and many more “under-the-hood” code fixes. This includes fixes to the mission
packs QuakeC as well.

Acknowledgements

Thanks to the following people for their assistance and generosity. We could not have
compiled this mod without their guidance either directly, through tutorials, mapping,
code comments or forum posts:

ryanscissorhands, ILike80sRock, onetruepurple, Qmaster, RennyC, c0burn, ydrol, Preach,
Joshua Skelton, Spike, Khreathor, Shamblernaut, ericw, metlslime, necros, negke, Baker, sock,
G1ftmacher, NewHouse, Joel B, iJed, ionous, McLogenog, Danz, whirledtsar, therektafire,
thoth, vbs, Lunaran, Voidforce, NullPointPaladin, ZungryWare, Twitchy, Paril, fairweather,
shinola, SunkPer, KONair, xaGe, seven, Greenwood, hemebond and many others on the
Quake Mapping Discord and on func_msgboard.

We also want to thank Pinchy, Mugwump, Len and PalmliX for their help with bug hunting.
Apologies if we're forgetting anyone else who assisted! Please let us know.

You can inquire about progs_dump on the Quake Mapping Discord.

Check out dumptruck’s Quake videos including the progs_dump how-to playlist, on YouTube.

A special thank you to Ian “iw” Walshaw for his excellent coding, detailed comments
and for fixing a massive list of bugs starting with version 1.1.1

Simply put, progs_dump would not have been as stable or ambitious without him.

https://discordapp.com/invite/j5xh8QT
https://www.youtube.com/c/dumptruckds
https://www.youtube.com/playlist?list=PLgDKRPte5Y0DDdXGWAhM8IowCjcjVmblm

Installation

1. Unzip the progs_dump archive into your Quake folder. This will create a pd_200 folder

inside. This directory will be a learning tool and reference for the features of the dev kit.
Play it like any other Quake mod using the start map to explore a hub with sample maps.

The development folder contains the FGD and DEF files that allow JACK, TrenchBroom
and other editors to use the features of the devkit. Please refer to your map editor
documentation for information on how to load mods and FGD files. In addition, there is a
wad file that you can use to load the textures used in the sample maps. The QuakeC
source code is included as well.

2. When you are ready to create your own mod, unzip the mod_template.zip into your

Quake directory and rename the my_mod folder to the name of your mod (with no
spaces). This folder is a stripped down version of progs_dump without the sample maps
and other files. However, the new models, sounds, sprites, progs.dat and QuakeC
source code are included.

3. When you are ready to release your mod, zip up your mod directory and make sure to

include the progs_dump-devkit-readme.txt file and the QuakeC source folders in your
release. If you modify the QuakeC code, make sure and include that version in your zip
instead of the original QuakeC files.

4. Please do not include the original progs_dump sample maps in your mod. But feel free

to use the entity setups from the samples and prefab maps in your own projects. e.g.
particle effects or custom monster entities.

5. Make sure and share your work on the Quake Mapping Discord in the #progs_dump
channel! https://discordapp.com/invite/j5xh8QT

6. Good luck and happy modding!

Do not copy new versions of progs_dump over existing installations. It’s always best to
make a new folder and move any work-in-progress maps and assets there.

Please read progs_dump-2.0.0-README.txt for important info and any last
minute changes.

Remove any cfg files, screenshots or save game files before zipping up your
mod folder!

https://discordapp.com/invite/j5xh8QT

Spawnflags

Trigger Spawned Monsters
The most requested feature of any general purpose Quake mod is trigger spawned monsters.
This makes spawning monsters much easier than in the original game. All you need to do is
select the Trigger Spawn flag and target the monster with any trigger when you want them to
appear. Ambush (from vanilla Quake), will prevent the selected monster from being “awakened”
by other monsters nearby. Errant gunfire or seeing the player will wake them up. No Sight
Sound will suppress the monsters “wake up” sound. e.g. A Shambler will not roar when it sights
the player.

Appearance Flags
Nearly every entity in the devkit has an expanded set of “Appearflags” compared to vanilla
Quake. These new flags allow you to customize what shows up in a specific mode of the game.

4096 Not in Coop
8192 Not in Single Player
32768 Not on Hard Only
65536 Not on Nightmare Only

Spawnflag 16384 is not used here because it's already used for something else in progs_dump.

The new spawnflags complement and complete the set of built-in spawnflags provided by the
engine, which of course are:

256 Not on Easy
512 Not on Normal
1024 Not on Hard or Nightmare
2048 Not in Deathmatch

In conjunction with the old spawnflags, the new spawnflags make it possible to exclude any
entity from any combination of game modes and/or skill levels.

Not in Coop and Not in Single Player

These spawnflags were inspired by Quoth 2 (Kell and Necros, 2008), which included two
additional spawnflags for all entities: Not in Coop and Coop Only. In contrast to Quoth 2, the
spawnflags implemented here are Not in Coop and Not in Single Player, for symmetry with the
built-in Not in Deathmatch spawnflag.

Not on Hard Only and Not on Nightmare Only

The set of built-in spawnflags doesn't allow a mapper to treat the Hard and Nightmare skill
levels differently, because it only includes one spawnflag, 1024, which excludes an entity from
both Hard and Nightmare. The new Not on Hard Only and Not on Nightmare Only spawnflags
allow the mapper to exclude an entity from one of these skill levels without affecting the other.
The original spawnflag will supersede the new flags.

https://tomeofpreach.wordpress.com/quoth/

Monsters

Version 2.0.0 of progs_dump focuses heavily on monster customization. There are a lot of new
key | values that can seem overwhelming at first glance. To make things easier to digest, the
new features can be broken down into three categories: behavior mods, models and sounds.

When creating a custom monster, think of it as giving that monster a Halloween costume. You
change their appearance with a compatible model and / or a skin. Change their “voice” with new
sounds. Then disguise their attacks with projectile models, sound effects and behavior
modifiers. There are dozens of replacement monster models, skins and sounds from various
Quake mods dating back nearly 25 years. Info on where to find them is in Appendix B.

Some of the new features in progs_dump can drastically change the way the game
plays. Always use proper game design principles and communicate to the player that
there is something different than they might expect.

1. To use a custom monster model, it must have the same number of animation frames in

the same order as the monster you are using as a base. Don’t worry though, there are
many “replacement” models and skins available. See Appendix B for info.

2. Custom monster sounds should be roughly the same duration as the original monster
sounds you are using as a base.

3. Currently, the “rate of fire” for a custom monster cannot be changed but the damage
dealt can be!

4. The Wizard’s “slime” projectiles and the Shambler’s lightning bolts cannot be replaced.
5. progs_dump only comes with a few built-in models to keep the distribution size to a

minimum. You will have to provide custom models yourself.

For more info, check out our sections on built-in assets and where to find custom models.

Even with these limitations, you can create a large variety of monsters that feel unique. Also,
progs_dump has a simple “plug-in” system where you will be able to download pre-made
monsters to add to your mods.

It’s important to note the limitations of monster customization before getting started:

Behavior Modifiers
Use the following key | values to change health, damage, spawn times, visual effects and more.

Key Details

berserk Skips certain pain animations similar to skill 3
Makes a semi-nightmare monster! e.g. The
Enforcer will not stumble after taking damage.

• 0 Off (Default)
• 1 Berserk (skip pain animations)

Excludes Bosses, Zombies and Spawn.

damage_mod Multiply all damage from this monster by this
number (e.g. 4 = Quad damage, 0.5 = half
damage)

delay The delay key allows you to add a custom
delay to each trigger spawn. Normally,
multiple targets will spawn simultaneously. If
you want to stagger the time each monster
enters the map, add a delay.

Use the drop down menu to select some
predefined values or enter a custom value in
seconds if you need a specific time set.

drop_item • 0 (Default) Disabled
• 1 Drop a Silver Key upon death
• 2 Drop a Gold Key upon death
• 3 Drop a Health Vial upon death
• 4 Drop a Armor Shard upon death
• 5 Drop one vial and one shard
• 6 Drop a random combination of 3 vials
and/or shards

Optional: Use keep_ammo 1 on Grunts,
Enforcers or Ogres when this is enabled.

effects Add a visual effect to an entity

• 0 None (Default)
• 1 Brightfield (yellow particles)
• 4 Bright light
• 8 Dim light

health Monsters can have custom health levels.

keep_ammo Stop Ogres, Grunts and Enforcers from
dropping backpack ammo by setting to 1.
Covered in this video.

https://youtu.be/RnJQc1WldF0

obit_name Custom description of WHO killed the player.
When used with obit_method, this will set part
of the text for a custom obituary.

e.g. a Super Soldier!

obit_method Custom description of HOW this monster
killed the player. When used with obit_name,
will set part of the text for a custom obituary.

e.g. eviscerated - If empty, defaults to killed.
Using the examples above, the obituary
would read: “Player was eviscerated by a
Super Soldier!”

pain_target see description below

pain_threshold see description below

sight_trigger Set sight_trigger to 1 to have monsters trigger
targets when they see the player. This means
they can not trigger an event upon their
death. You can still use pain_targets.
Covered in this video.

spawn_angry Only when trigger spawned:

• 0 default behavior - not angry
• 1 set to 1 to spawn angry at player

wait Play an effect when trigger spawned?

• 0 Teleport Effects (Default)
• 1 Spawn Silently

When using drop_items with keys, take care that the key is accessible by the player
when it spawns. Avoid placing monsters near lava or a void where the key could be
lost or break the player’s progression in other ways.

https://youtu.be/RnJQc1WldF0

Custom Monster Models
In Quake it’s easy to replace a monster model. Simply place a different model in the correct
directory with the same name as the monster you want to replace. The drawback is that every
iteration of that monster will have that model in the game. Same with sounds and other assets.

In progs_dump you can use the key | value pairs below to load any compatible model for a
given monster entity in your map. This allows you to mix and match monster types in the same
project. Using this with custom health, damage, sounds and other behaviors allows you to have
a variety of monsters in your project without any coding required.

Not all of these key | values appear on each monster. For example, the Spawn has no head and
therefore, no head model!

Key Details

mdl_body Path to custom body model
e.g. dev/super_soldier.mdl

mdl_head Path to custom head model

mdl_proj Path to custom projectile model

skin Skin index number of the body model if
multiple built-in skins are included.
Defaults to 0

skin_head Skin index number for head model if multiple
built-in skins are included.
Defaults to 0

skin_proj Skin index number for projectile model if
multiple built-in skins are included.
Defaults to 0

mdl_gib1 Path to custom 1st gib model

mdl_gib2 Path to custom 2nd gib model

mdl_gib3 Path to custom 3rd gib model

You can use Quake compatible sprites and BSPs in addition to models!

Custom Monster Sounds
As with models, progs_dump allows you to replace the sounds a monster makes with custom
audio. Most, but not all sounds can be replaced. Each monster entry in the FGD and DEF
details any sounds that are not obvious with a hint in ALL CAPS. e.g. snd_misc2 will replace the
Enforcer's “HALT!” sight sound. You can see tips on how to “audition” existing sounds and
models in the Custom Monster Example section below.

Custom sound files used with these entities must be in the SOUND folder of your mod
(or a sub folder under that SOUND folder.) There is no need to add “sound” in the
path. (e.g. boss2/sight.wav) Most Quake source ports require a mono sound file for
custom sounds. Do not use stereo files in your mod except for music.

Key Details

snd_attack Path to custom attack sound.

snd_death Path to custom death sound.

snd_hit Path to custom hit sound.
e.g. laser hits wall

snd_idle Path to custom idle sound.

snd_misc Path to custom sound. Context will be
different for various monsters or items.

e.g. Enforcer’s “FREEZE” sight sound.

snd_misc1 same as above

snd_misc2 same as above

snd_misc3 same as above

snd_move Path to custom sound for Chthon rising from
lava.

snd_pain Path to custom pain sound.

snd_sight Path to custom sight sound.

pain_threshold
pain_target
When a monster’s health drops below it’s pain_threshold, it’s pain_targets are triggered. You
can use this to call in reinforcements mid-battle or spawn items or fire other triggers when a
monster reaches a certain level of health. You can also target things upon a monster’s death, as
always. Default values for monster health have been added to the FGD for reference. Check out
this tutorial video to see this and other features in action.

monster_boss2
monster_oldone2
These are killable variants of the original boss monsters. On Skill 1 (Easy) these both have
1000 HP. On Normal, Hard and Nightmare the HP is set to 3000. You can also set a custom
heath value, as with other monsters. Upon death, Shub will always gib but Chthon will only gib if
his HP drops below -50 with one hit (Quad Damage, etc.)

Enhanced Zombies
Zombies have more options in progs_dump. First off, there are motionless, silent versions of the
crucified “decorative” zombie. You can also create a sleeping zombie that will not awaken until
triggered. You must target these zombies if the Spawn Sleeping spawnflag is set. If you trigger
spawn a sleeping zombie into a map, you will have to target them a second time to “wake” them
up. You can see examples of the new features in the pd_zombies sample map. Spawnflag
examples:

The TrenchBroom FGDs have an added frame key dropdown that will allow you to see the
zombie as it will spawn in-game. This helps you position the zombie in TrenchBroom and has
no other effect in the game.

https://youtu.be/RnJQc1WldF0

Monster Styles
This started out as a coding exercise but we decided to include it in progs_dump as part of
monster customization. Grunts, Ogres and Enforcers now have different attacks that can be set
via the style key. Of course, you can change their appearance and behaviors as explained
above to make variants. e.g. You can replace the rocket projectiles with a custom sprite and add
new sound effects to make a Grunt fire an explosive blast of energy.

Grunt styles

Style Description

0 Shotgun (default)

1 Rockets

2 Grenades

3 Lasers

4 Nails

Enforcer Styles

As with the Grunt and Ogre you can use the mdl_ and snd_ keys to replace projectiles, head,
body, sounds and skins to create variations of the Enforcer.

Ogre styles

Style Description

0 Lasers (default)

1 Rockets

2 Grenades

3 Nails

Style Description

0 Grenades (default)

1 Flak Ogre (also seen in Quoth and The
Marcher Fortress)

2 Sniper. Shoots a single, deadly lava round.

3 Multi-Grenade (from Mission Pack 2)

You cannot replace mdl_proj on an Ogre set to style 3 but all other projectiles and models can
be replaced. If you prefer “lava spikes” for the Flak Ogre you can use skin 1 in the Ogre’s
skin_proj key.

We’ve included models with a few simple custom skins for styled monsters that can be set in the
skin key.

func_monster_spawner
When activated spawns standard id1 monsters to it’s targeted info_monster_spawnpoint. The
monster total is updated upon each spawn. Choose the Style of monster via dropdown, Style2
set to a value of 1 overrides Style and chooses a random monster. Count is how many
monsters to spawn in (default is 5). Wait is the default time between spawns (default is 5
seconds). Berserk can be set to 1 to skip most pain animations. Can only use default health,
models and sounds.

info_monster_spawnpoint
Destination for func_monster_spawner. Alternatively, you can use a misc_teleporttrain for a
moving spawn point. See the next section for details.

A func_monster_spawner will wait to spawn until there is nothing that can take damage around
a 128 unit radius. The info_monster _spawnpoint only sets the position for the spawn, the
func_monster_spawner determines if a monster is in range. So ensure both entities are close
together as pictured below. You cannot use multiple func_monster_spawners with one spawn
point.

Because monster bounding boxes are so varied, it’s best to pay attention to the larger
bounding box of the info_monster_spawnpoint. Keep it clear of doors, buttons and
other geometry so your monsters have some room to enter this dimension!

misc_teleporttrain
This was used for the final boss level in the original game. In progs_dump you can use this as a
moving decoration with a custom model or even target it as a spawn point for a
func_monster_spawner. Make sure and select the Don't Rotate spawnflag in this case, or you'll
experience a pretty hilarious game breaking effect!

You set this up like a func_train using path_corners. By default, it will move automatically
between path corners upon map load. However, you can have it wait to move by giving it a
targetname. If you need to target it as a spawner and want it to move on map load, use the Start
On spawnflag. Here’s a video tutorial on how to use trains and path_corners in Quake.

You can add effects using the dropdown, use a custom model using the mdl_body keyvalue and
even make it Invisible with spawnflag 8. For example, you can animate a moving light around a
level using the dimlight effect with the invisible flag set.

https://youtu.be/J5EIuLXkBw4

Custom Monster Example
We’ve created a “plug-in” monster template for progs_dump that will make it easy to share or
reuse custom monsters. The first example of this is the Hellrath which you can download here.
This monster uses the monster_shalrath as a base and adds a replacement body model,
projectile model, a new skin, new sounds and some modifications to health and damage to
make a “new” mini-boss.

In this section, we’ll cover the basic steps we followed to get this working in progs_dump but we
cannot go into detail on how to use each application. Some of the apps you can use are:

Quake 1 Model Viewer view models and animations, import and export skins
AdQuedit 1.3 Powerful app that allows editing of most Quake files formats
AdQuedit Manual
PakScape Browse PAK files and export their contents.
Quake Model Editor a.k.a QME
TexMex Texture manager
Wally texture editor
Wally Tutorial
Ocenaudio excellent cross-platform, donationware audio editor
Grafx2 cross-platform, free, 8 bit paint program (a bit clunky but great for quick edits)
Grafx2 Tutorial on YouTube
Links to 8 bit friendly graphic apps

Make sure you credit the original creators of the assets you are using in the readme file
for your mod. And of course, make sure you are free to modify and distribute their
work.

http://www.quaketastic.com/files/models/skins/progs_dump_plug_in_monster_hellrath.zip
https://www.moddb.com/games/quake-wrapper/downloads/quake-1-model-viewer-v050-alpha
https://www.quaddicted.com/files/tools/adquedit_v13.zip
https://www.quaddicted.com/files/tools/adquedit_manual_v125.zip
http://www.quaketastic.com/files/tools/windows/misc/pakscape-011.zip
http://www.quaketastic.com/files/tools/QME%203.1_full%20installed.rar
http://www.quaketastic.com/files/tools/windows/wad_editors/Texmex_3.4.zip
http://www.quaketastic.com/files/tools/windows/wad_editors/Wally-155B.zip
http://www.quaketastic.com/files/tools/windows/wad_editors/Wally_tutorial.zip
https://www.ocenaudio.com/whatis
http://grafx2.chez.com/
https://youtu.be/D8YH7kqspu0
https://lospec.com/pixel-art-software-list

The first step was choosing a custom Shalrath model created by “Chillo” as part of their
replacement monster pack. You can see animation frames and export a .bmp skin file with the
Quake 1 Model Viewer. Unfortunately, you can only overwrite the existing skin file. However,
AdQuedit can add skin files without replacing the original. Note that AdQuedit uses the .pcx
image format not .bmp.

We decided this monster should fire lava projectiles instead of the standard “voreballs”. Using
Quake 1 Model Viewer we changed a flag on the model to have a rocket trail.

http://www.quaketastic.com/files/models/chillo_model_beta_v1.7.zip

Next we added a skin to the existing model. Using a paint program to add a lava texture to it’s
limbs. We used AdQuedit to insert the .pcx format skin into the model.

Keep in mind when you are making skins they must be in the Quake palette. You can
learn more about Quake’s textures on Quakewiki.org and in my texture series on
YouTube.

https://quakewiki.org/wiki/Textures
https://youtu.be/xnSqmHOh3XQ

After that, we created some audio files to replace the standard Shalrath sounds. These must go
into the sound directory of your mod. In this case, we named a subfolder hrath_snds.

You can audition and extract sounds, models and other files using PakScape. Make sure and
use a compatible sound format. 11k, 16bit mono was used for the Hellrath. More on that in the
Custom Sounds section below.

The model files for Hellrath go in their own folder inside your mod folder. Usually Quake models
are found under the progs folder. You can place your models there if desired, it will work either
way.

Remember, model files go in their own folder (or inside the progs folder) and sounds must be in
a folder inside the sound folder of your mod.

The sounds should roughly be the same duration of the original monster sounds you
are replacing or they might cut off in-game.

http://www.quaketastic.com/files/tools/windows/misc/pakscape-011.zip

The next step is to add these paths to your monster in your map editor. The paths to the new
sounds do not need to include sound in the key so you start instead with the hrath_snds folder
as seen below. However, if the models are in the progs directory (not pictured) you need to add
progs to that path.

The monster below does 1.5 times the damage of a Shalrath and has 600 health. When a
player is killed by this monster the obituary will read: “Player was banished by a Hellrath”.

It’s really easy to make a typo as all these entries are done by hand. So if for some reason your
monster isn’t working, check your paths for typos or other mistakes. Most of the time, this is
the culprit.

The process for adding custom models for ammo, health and other items in the game
is the same as above.

Multiple targets, targetnames and killtargets

Most entities can now trigger up to four separate targets at once (target, target2, target3 and
target4). They can also have multiple targetnames (targetname, targetname2, targetname3 and
targetname4). Mappers can also create setups with killtarget and killtarget2. In addition,
mappers can use target and killtarget in the same entity. This is not possible in vanilla Quake.

Multiple triggers can be used in nearly any combination or order. For example: target3 can
trigger targetname2 in a different entity.

IMPORTANT: When using path corners or other similar entities, use the primary target and
targetname fields for navigation only. The additional numbered fields may not function as
expected in these cases. The Quoth mod has the same feature and the rule of thumb there
applies here. As Preach states on the Quoth tutorial site: A recommended structure is to use the
original targetname field to give entities unique identifiers, and use the remaining fields for group
triggers.

Items
Most items have enhanced capabilities in progs_dump. This includes ammo, weapons, keys
and power-ups. Items can be suspended in mid-air via a spawnflag or trigger spawned just like
monsters. Set a targetname for the item and select the Trigger Spawned spawnflag. Like
monsters, they can spawn silently or with the “t-fog” teleport visual and sound effects.

The effects key allows you to add some built-in visual effects to items. A drop down is available
with brightfield (yellow particles), bright light and dim light effects. The alpha key controls the
model transparency so you can have “ghostly” items or monsters.

Respawning Items
Most items can also be set to respawn. Setting the ritem key value to 1 will cause the items to
respawn. Items will respawn based on the default time settings for a deathmatch game. You can
set a custom respawn time using the respawndelay key and control how many times an item
respawns with the respawncount key. By default, items will display the “t-fog” effects when
respawning. You can mimic deathmatch respawns with the Respawn with DM Effect spawnflag.
This skips the “t-fog” effect and plays a more subtle sound effect.

In the example below, the super nailgun is trigger spawned when the player presses a button
targeting “t2”. After the player picks up the weapon it will respawn in 45 seconds but only 3
times.

Custom Item Models
Similar to monsters; health, ammo, armor, artifacts and other items in the game can use custom
models. Also, for health and ammo boxes, mappers can choose the original .bsp models or .mdl
versions by setting the worldspawn entity style key to 1. Mdls will “accept” the light on the brush
directly beneath them. Bsp models are “pre-lit” at a set value. Using .mdls can make for more
realistic lighting in your maps. Many thanks to Lunaran for sharing these mdls from his excellent
Copper mod! Of course, you can use any model for these by setting the mdl_body key as with
other entities.

Some custom models may have a different origin than the item you are replacing. If you trigger
spawn these items, the teleport “t-fog” particles will be off center. Use the particles_offset key to
adjust the coordinates. It may take a little trial and error to get the right adjustment.

http://lunaran.com/copper/index.html

You may want to edit the model’s origin using AdQuedit or a modelling program. Again, it might
take a little trial and error depending on the model. Models that rotate should not be edited like
this unless you remove the rotate flag.

Before

AdQuedit

After

item_armor_shard
Originally progs_dump was less ambitious and the end goal was just an “enhanced” vanilla
Quake for mappers. But as ladders, breakables and rotating brushes were requested, that strict
goal was relaxed. Armor shards have been controversial in the single player community, but can
be useful for mappers who want to guide the player in certain directions or reward them with a
less potent power-up. These shards originally were part of the cancelled RemakeQuake project.
The code has been modified a bit from that version.

Quake’s armor uses a proportional system to protect the player’s health points. Each shard is
worth 5 points of armor. On their own, shards protect the same proportion of damage as green
armor. If you pick up yellow or red armor, the proportion changes to those levels, but the extra
points do not carry over. You can buff each armor level up to 25 extra points.

item_health_vial
These are worth 5 health. Vials will not “over heal” the player. The default model has 5 built-in
skins and uses red by default.

item_backpack
Use this as an alternate ammo pickup for secret areas or for other special gameplay setups.
This entity requires you to set an ammo type spawnflag. If the All Ammo flag is selected,
item_backpack gives roughly half the ammo from each of the 4 standard pickups:

10 Shells
12 Nails
2 Rockets
3 Cells

Or you can check off spawnflags to mix and match types. e.g. Shells and Cells. Override the
spawnflag defaults by adding custom amounts to the keys for ammo_shells, ammo_nails,
ammo_rockets or ammo_cells. Make sure and select both the spawnflag and matching ammo_
type. Remember, player ammo counts will always max out at 100 or 200 depending on the type!

item_backpack can be trigger spawned, spawn silently and be suspended but cannot
be set to respawn.

Make sure and select one or more ammo_ type spawnflags for this to appear in your
map. All Ammo will override other spawnflags.

item_backpack uses a new model created for progs_dump by starshipwaters. However, you can
use any other model similar to how monsters work with the mdl_body key. You can change the
pickup sound with snd_misc.

There are 12 different skins you can choose from, including distinct versions for the four
standard ammo types. The FGDs feature a dropdown for easy skin selection.

If you prefer the original vanilla backpack, use skin 12 or set the mdl_body key to
progs/backpack.mdl. You can set a skin index if you are using a different custom model with
built-in skins. To make an invisible backpack set mdl_body to progs/s_null.spr.

The default pickup message is `You got a backpack.` But you can set a custom message with
the netname key. 'You got' will be the prefix and the mapper chooses the rest of the message.

e.g. For 'You got a bunch of rockets!' the netname value would be 'a bunch of rockets!' In the
example below, the backpack will have the rocket skin (3), give 99 rockets only, trigger spawn
and be suspended in mid-air. Use the effects key to add lighting and particle effects.

Grunts, Enforcers and Ogres will still drop the standard vanilla backpack when they are
killed. This cannot be changed currently.

https://www.artstation.com/starshipwaters

item_key_custom
This allows mappers to use any Quake compatible model, sprite or BSP as a key. We’ve also
included new key models with different color variations. The new key models are not
hard-coded, but you can find these in the progs folder and set their paths in the mdl key.

keyname: name of the key, e.g. 'bronze key' (required), mdl: model file path (required) noise:
sound file for the pickup sound (default is per worldtype), skin: skin index (default 0), frame
(default 0): display this single frame of the model, if animated. NOTE: The key will not display
any animation.

Three new models based on id’s original keys are included. One for each worldtype: base, runic
and wizard. Each of these has four color variations, also referred to as their skin index: jade
(green, skin 0), runic (magenta, skin 1), blood (red, skin 2) and alabaster (gray, skin 3). The
development/wads folder has a wad with textures for use with the different styles seen below.

The keyname value is used both for the pickup message and to associate the key with the entity
that it unlocks. To make a func_door or trigger_usekey require this key, set the keyname value
of that entity so that it matches the keyname value of the item_key_custom entity.

If different item_key_custom entities have the same keyname value, they will be treated as
different copies of the same key and may be used interchangeably.

A map may have a maximum of 23 unique keyname values across all entities.

The behavior of an item_key_custom should be as the player expects (based on the behavior of
the silver and gold keys), except for the fact that it will not appear as an icon in the player's
status bar when picked up. This is a limitation of the engine. Finally, there is a sample map
called pd_keys you can review.

weapon_shotgun
This is a pickup model that should be used when you want a player to spawn with only an axe
and then later get the shotgun: (trigger_take_weapon or reset_items 2 in worldspawn). There
are two models to choose from. Spawnflag 2 (the default) selects an unused “classic look”
model from Rubicon 2 by metlslime. Spawnflag 4 is an alternative from Slapmap and has been
used in a few mods.

Item Customization Table
Items have different levels of customization options depending on the type:

If you want to fully customize ammo pickups, use item_backpack instead.

Category Model / Skins Sound Name Details

ammo yes no no Set style to 1 in
Worldspawn to
replace default
BSP models
with Copper
ammo models

armor yes pickup sound yes Use the
obit_name key
for custom name

health yes pickup sound no Set style to 1 in
Worldspawn to
replace default
BSP models
with Copper
ammo models

artifacts yes no no

weapons no no no

runes no no no

Custom Sounds

Attenuation
A note on the “speed” key (a.k.a attenuation factor) in sound entities. Attenuation in Quake
means the reduction of a sound over a distance. Here’s a table of what the different speed keys
mean in progs_dump.

play_sound_tiggered
Play a sound when triggered. Most of these key / value pairs can be left to their defaults. Can
be looping or a “one off” sound.

Custom sound files used with these entities must be in the SOUND folder of your mod
(or a sub folder under that SOUND folder.) There is no need to add “sound” in the
“noise” path. (e.g. boss2/sight.wav) Most Quake source ports require a mono sound
file for custom sounds. Do not use stereo files in your mod except for music.

Speed QuakeC name Attenuation effect

-1 ATTN_NONE heard everywhere

1 ATTN_NORM fades to zero at 1000 units

2 ATTN_IDLE fades to zero at 512 units

3 ATTN_STATIC fades to zero at 341 units

Key Details

toggle (spawnflag) sound can be stopped and started when
triggered

volume how loud (1 default full volume)

noise path of the sound to play
(e.g. blob/sight1.wav)

impulse sound channel 0-7 (0 automatic is default)

speed attenuation factor (default recommended)

Looping sounds that are triggered ON will NOT play after the player loads a saved
game. They will have to be triggered OFF then ON again. Also, you may encounter
problems triggering sounds that are far away from the player. If you do, move the
sound and trigger closer.

play_sound
Plays a “one off,” non-looped sound at a random interval. Like thunder or a monster sound.
IMPORTANT: Do NOT use looped sounds with this entity. For looped sounds see
ambient_general below. Check out this video tutorial on creating looping sounds for Quake.

ambient_general
Plays a custom looped sound. Cannot be toggled off or triggered. noise = path of the sound to
play (e.g. ambience/suck1.wav)

ambient_thunder
Originally unused in the game. Plays the sound of thunder at a random interval. You only need
one of these in your map. It will play everywhere. If you want it to play locally instead, use a
play_sound with a different speed setting. The path for the sound is: ambience/thunder1.wav

ambient_water1
Swirling water sound effect. Usually this is added automatically to maps with water when you
run VIS. If you want to place these in your map by hand, you can run VIS with the -noambient
command line switch.

ambient_wind2
Howling wind sound effect. Usually this is added automatically to outdoor sections of maps with
sky textures. If you want to place these in your map by hand, you can run VIS with the
-noambient command line switch.

ambient_fire
This is a simple looping sound from the torches. Use this if you are using custom fire sprites or
models. This is the same effect as FireAmbient in earlier versions of progs_dump.

Key Details

volume how loud (1 is default full volume)

noise path of the sound to play
(e.g. boss2/sight.wav)

wait random time between sounds (default 20)

delay minimum delay between sounds (default 2)

impulse sound channel 0-7 (0 automatic is default)

speed attenuation factor

https://youtu.be/pj7C_igr0bs

Custom Models and Sprites

misc_model
A point entity for displaying models and sprites. A frame range can be given to animate the
model. Sprites may not display in mapping programs but models will in TrenchBroom if the path
is set correctly. Here’s a link to an older progs_dump video that has some more info and tips for
using misc_models in your mod.

IMPORTANT: Set the angle (no S) value to 0 if using angles (with S) key to rotate mdls
(see gib_ section for more info or the video linked above.)

Key Details

mdl The model to display. Can be of type mdl,
bsp, or spr.

frame Single frame to display. Can also be used to
offset the animation starting frame for
variations (e.g. when using fire sprites)

first_frame The starting frame of the animation.

last_frame The last frame of the animation.

speed The frames per second of the model’s
animation. Divide 1 by the fps for this value.
(Default 10)

angles pitch roll yaw (up/down, angle, tilt left/right)

https://youtu.be/uqdf1XPk-34?t=499

Enhanced Triggers

This mod has some enhancements to triggers that allow some to start off or even toggle off and
on. See the table below for more information.

is_waiting
If this value is set to 1, certain triggers will do nothing until another trigger activates it. The FGD
provides a dropdown selection or you can enter the value by hand. The following table shows
which triggers use is_waiting 1:

trigger_changelevel
On triggers that point to a hub or start map, the Use info_player2_start spawnflag will spawn the
player on the info_player_start2 entity when the map changes. You’ll need an
info_player_start2 on the map you are changing to! Use this to skip skill selection when
completing an episode as in the original game. Or you can return the player to a different part of
a hub map.

trigger_heal
When a player enters this trigger they are healed at a rate of 5 HP per second (by default.)

trigger is_waiting (start off)

trigger_once yes

trigger_multiple yes

trigger_teleport* yes (use targetname2)

trigger_changelevel yes

*In order to use is_waiting on a trigger_teleport, make sure and use targetname2 to
“wake it up” instead of targetname.

Key Details

heal_amount Healing per second (default is 5 HP)

health_max The upper limit for healing (default 100, max
250)

spawnflags Start on - Start on if using targetname. Only
needed if triggered by something other than
touching. Player only, Monsters only

noise path to custom healing sound

trigger_look
John Romero wanted this in the original game and thanks to NullPointPaladin, it’s finally here!
This will trigger when a player is within the brush trigger and looks directly at a target entity. Use
the first target key for the "looked at entity" and use the subsequent targets (2-4) to trigger other
events. See sample map pd_cutscenes for one setup using a skip textured func_wall (more on
this below.).

The entity targeted by trigger_look needs to be an entity with a bounding box (bbox), collision
(solid), be targetable and visible (not moved out of bounds). A func_wall is a great example
although entities like gibs, lasers, dead monsters, or others can be targeted as long as they are
"solid" by using the solid spawnflag where applicable.

A func_illusionary doesn’t work because it doesn't have a bbox that interacts with the player. A
func_detail is ignored, as it cannot be targeted.

If you need an invisible brush, use a skip textured func_wall. If you need to avoid triggering
a second time use a trigger_relay to killtarget the trigger_look's target or the trigger_look itself.
Also, the default distance from the player to the look target is 500 Quake units. If the target
needs to be farther away or closer, set the speed key to the proper distance. Use a brush as a
"ruler" to measure the distance in TrenchBroom if needed. You can set a custom sound by
setting sounds to 4 and adding a path to the sound in the noise1 value.

This will not work or is not recommended with the following brushes: func_illusionary, any func
detail variant, func_group, func_particle_field, non-solid func_laser, func_bossgate or
func_togglewall.

Brushes textured in clip will not work.

Don’t use items or monsters as the trigger as they can be removed and /or lose their
bbox upon death. .

Key Details

speed Distance from player to search for trigger,
adjust if the target is too far from the trigger
(default 500 units)

wait Time between re-triggering
(default 0)

sounds 0-3 are standard Quake trigger choices, 4
allows a custom sound, requires a path set in
noise1 key

noise1 Path to custom sound. Use with sounds key
set to 4 (e.g. fish/bite.wav)

You can see trigger_look in action near the beginning of the sample map pd_cutscenes. When
the player looks at the rune a message plays. Yes, you could do this with a trigger_once using
an angle key, but using this method it will only trigger if the player looks directly at the platform.

In this example, we used a func_wall textured in skip. The reason this is used instead of the
rune is that the rune’s bounding box is smaller and farther away, making it harder to trigger
correctly during testing.

We used a larger brush in this case and killtargeted it before the player could collide with it. If
the setup is in a smaller area you will likely be able to use the entity itself. Test early! Test often!
One tip is to have a backup method of targeting entities in case the player doesn’t look at what
you need them to trigger! In this map, we used the button nearby to killtarget the func_wall just
in case the player missed this moment in the “story.”

trigger_push_custom
This can be used to create traps, jump pads, water currents and more.

If the Start Off spawnflag is set the entity will not trigger until targeted. This can be targeted and
toggled off and on. If the Silent spawnflag is set it won't make the standard “windfly” sound. Use
Custom Noise spawnflag and the noise key/value together to use a custom push sound.
Custom sounds should be "one off” sounds NOT looping sounds. A good way to simulate a
water current is to have the trigger_push_custom under the surface of your water brush by
about 32 units. You can see an example in the pd_gallery.map

trigger_monster_jump
If the Start Off spawnflag is set the entity will not trigger until targeted. This can be targeted and
toggled off and on. So monsters can be attacking from a distance and then be triggered to jump.

trigger_take_weapon
This will remove the shotgun from the player’s inventory and all shells. Place this over an
info_player_start to have the player start with only the axe… or use this trigger to surprise the
player in some devious way. Make sure and place a weapon_shotgun in your map for the player
to get eventually!

An alternative would be setting reset_items to 2 in your worldspawn if you want an “axe only”
start.

The way trigger_monsterjump works requires a monster to be “awake” and “angry” at
the player before the jump is activated. You can always target a monster with a
trigger_once to wake them up.

trigger_setgravity
If the Start Off spawnflag is set the entity will not trigger until targeted. This trigger changes the
gravity on a player or monster that touches it. The trigger itself can be toggled on and off.

The gravity key defaults to 0 which is normal gravity. Lower numbers (e.g. 25) equal lower
gravity. Setting 100 is normal gravity. Numbers above 100 will make the player “heavier”, i.e.
harder to jump.

trigger_shake
Earthquake trigger - shakes players in it's radius when active. Strength of tremor is greatest at
the center.

dmg is strength at center (default is 120.) wait duration of shake (default is 1.) count effect
radius (default is 200.) noise path of sound to play when starting to shake. noise1 path of sound
to play when stopping. We’ve included earthquake sound effects, see Appendix A for details.
targetname must be triggered. The VIEWONLY spawnflag shakes the view, but player
movement is not affected. Check out the pd_bosses and pd_lava sample levels to see this in
action.

trigger_usekey
Variable sized single use trigger that requires a key to trigger targets. Must be targeted at one or
more entities. Use the message key to create a custom message for this. e.g. “Bring the Gold
Key here mortal!” This trigger cannot start off or be toggled. Setting cnt to 1 will not remove the
key from the player’s inventory, which mimic’s the key behavior of Doom. Make sure and add
this key | value to all doors and / or let the player know the default key behavior has changed.
e.g. Perhaps a pickup message on the keys that reads: “This key works on many doors.”

trigger_void
Use this for a 'void' area. Removes monsters, ammo, etc... also kills players. Spawnflags can be
used to protect players or monsters.

The amount of gravity can only be changed by touching another trigger_setgravity with
a different setting.

If you want multiple trigger setgravity triggers in one room or area, make sure the
brushes are not touching each other. This can cause the triggers not to work properly.

trigger_cdtrack
A point entity that changes the currently playing music track when triggered. The number of the
track to play goes in the count key. e.g. 32 for track32.ogg See trigger_changemusic below for
more information on formats and more. NOTE: the track number uses the count key here but
trigger_changemusic uses the sound key for the same info.

trigger_changemusic
A trigger brush that changes the currently playing music track. The number of the track to play
goes in the sounds key (just like worldspawn). Most Quake engines require the trackXX.xxx
format. For example: track02.ogg or track98.mp3 Different Quake engines play different
formats. This is why Quakespasm, Quakespasm-Spike and vkQuake are recommended, as
they can play mp3, ogg, wav and FLAC formats. You can read more about formats here and
much more detailed information about how to format music for Quake here.

If you are adding custom music to your mod, we recommend you avoid using track01-11.
track01 does not exist in Quake and track02-track11 are Quake’s original tracks. Also note that
FTEQW does not play mp3 and Mark V doesn’t play ogg formats! Additionally, Mark V cannot
play mp3s that contain embedded images. You can use a program like Ocenaudio to open the
file and remove the image easily. In this case, you go to Audio Properties and click the small “x”
in the upper right (not captured below) to remove the image then save the file.

NOTE: We recommend including both mp3 and ogg formatted music tracks to ensure
compatibility with various Quake engines.

http://quakespasm.sourceforge.net/Quakespasm.html#ss3.1
http://quakespasm.sourceforge.net/Quakespasm-Music.txt
https://www.ocenaudio.com/

trigger_teleport
info_destination_random
progs_dump adds a number of new features to trigger_teleport. These are selected with new
spawnflags. In the case of the random spawnflag, there is a new entity info_teleport_random
which is a random destination marker for the trigger. info_teleport_changedest in another entity
that can be used to tell a trigger_teleport to change its target value to a different destination.
More info below.

Using the random spawnflag on trigger_teleport requires use of the count key and targeting a
info_teleport_random (instead of the regular info_teleport_destination). This causes the
teleporter to send the player to a random destination among the info_teleport_random markers
in the level. In the count key, add a number equal to the number of info_teleport_random
entities you placed.

Spawnflag Details

Player Only as in original Quake

Silent no ambient sounds as in original Quake, use
for monster closets and secrets etc.

Random can teleport to random destination entities

Stealth No particles or sound effects

Monster Only can be used with other spawnflags: stealth,
silent and random in any combination

info_teleport_changedest
Allows a mapper to change the target of a teleport_trigger. Useful in maps where the player may
fall into a void and the mapper wants to update where they "respawn" as they progress through
the level. Could also be used for teleport puzzles and more. This requires the addition of a
trigger_multiple in some setups.

NOTE: The best way to understand how this works is to look at the sample map
pd_change_dest.

The basic workflow is to set up a trigger_teleport with a target as usual, then add a targetname.
However, instead of using an info_teleport destination, the targetname will be referenced by an
info_teleport_changedest point entity. The info_teleport_changedest’s target key should match
the targetname of the trigger_teleport. The message key is the “replacement” targetname for the
trigger_teleport. Finally, the targetname is used to trigger this entity. This pattern can be
duplicated multiple times to change the destination of a single trigger_teleport.

NOTE: when a trigger_teleport has a targetname it must be triggered to operate, so adding an
overlapping trigger_multiple targeting the trigger_teleport will be necessary. Place the
trigger_multiple 8 units inside the trigger_teleport and this will re-trigger it. If you need to “kill”
the trigger_teleport, killtarget the trigger_mutiple and the teleporter will no longer work.

Key Details

target the targetname of the trigger_teleport to
change

message new info_teleport_destination's targetname to
switch to

targetname name of this entity so we can trigger it with a
trigger_mulitple or other

Enhanced Platforms

func_new_plat
This entity adds new capabilities to plats. It uses spawnflags to dramatically change the
behavior of the entity. As with the standard plat, build your plat in the raised position so the
entity will be lit correctly when you compile your map.

Spawnflag 1: Setting the Plat Start at Top spawnflag creates a plat that starts at the top and
when triggered, goes down, waits, then comes back up. health = number of seconds to wait
(default 5)

Spawnflag 2: Setting Toggle Plat creates a plat that will change between the top and bottom
each time it is triggered.

Spawnflag 16: Plat2 creates a plat in the bottom position, just like the standard plat. If a plat2 is
the target of a trigger, it will be disabled in the lowered position until it has been triggered. Delay
is the time before the plat returns to its original position.

Plat2 can be finicky so it’s advised to create your plat the exact height you need it to travel (as
opposed to having parts sticking into the ground or in hollow pockets below the plat for cosmetic
reasons.) You can set the height to tweak the amount of lip needed. See The Gallery map for an
example.

You must use one of the following spawnflags with func_new_plat. Even though they
use the same entity name, each spawnflag creates a very different plat.

You must use the height key when Toggle Plat is used. Use a negative height number
to start the plat off in a lower position.

Elevators

func_elvtr_button
This entity turns a func_new_plat into a multi-floor elevator. Here are the steps to follow to
create one. You can see this setup in the pd_elevator demo map:

First, create a func_new_plat. Select the Elevator spawnflag (4). Set the cnt key to the number
of floors (3 in the demo map). Next, set the height key to the vertical distance between floors
(256 in the demo map). Then, give the func_new_plat a targetname.

By default, the elevator starts at the bottom floor, so that's where the func_new_plat needs to be
positioned in the editor. Alternatively, if the mapper wants it to start at the top floor, they can
manually position the bmodel at the top floor and set spawnflag (8) Elevator Start at Top.

With the func_new_plat done, create any number of func_elvtr_button entities. Make each
func_elvtr_button target the func_new_plat. A func_elvtr_button is an "up" button by default. To
make it a "down" button, use the spawnflag Down Button.

When the spawnflags are set to elevator the wait key on a func_new_plat is defaulted to zero.
This means the player will be able to hit another button right away between floors as seen in the
demo map. The wait key on a func_elvtr_button behaves just as a regular func_button would,
controlling how long before you can hit a button each subsequent time.

NOTE: any func_elvtr_button will act as a "call" button if the elevator isn't already at that floor.

Misc Entities

trap_spikeshooter, trap_shooter, trap_shooter_switched
The original trap_spikeshooter shot only nails and lasers. All three of these entities can now
shoot lavaballs, rockets, Voreballs, grenades or gibs. Set the spawnflag accordingly. Use the
silent spawnflag if needed. Use the key state 0 for initially off, 1 initially on. (0 default) Refer to
the table below for specifics on how to trigger these.

func_counter
This is used to trigger things in a series. You can do some amazing new game play setups with
these. Make sure and take some time to play with this one and take a look at the pd_counter
sample map.

TOGGLE causes the counter to switch between an on and off state each time the counter is
triggered. LOOP causes the counter to repeat infinitely. The count resets to zero after reaching
the value in count. STEP causes the counter to only increment when triggered. Effectively, this
turns the counter into a relay with counting abilities. RESET causes the counter to reset to 0
when restarted. RANDOM causes the counter to generate random values in the range 1 to
count at the specified interval. FINISHCOUNT causes the counter to continue counting until it
reaches count before shutting down even after being set to an off state. START_ON causes the
counter to be on when the level starts. count specifies how many times to repeat the event. If
LOOP is set, it specifies how high to count before resetting to zero. Default is 10. wait the
length of time between each trigger event. Default is 1 second. delay how much time to wait
before firing after being switched on. You can see func_counter in action when the sarcophagi
burst open in pd_zombies.map and when used to animate the particle fields in pd_ladders.map.

func_oncount
For use as the target of a func_counter. When the counter reaches the value set by count,
func_oncount triggers its targets. count specifies the value to trigger on. Default is 1. delay how
much time to wait before firing after being triggered. You can see func_oncount in action when
the sarcophagi burst open in pd_zombies.map and when used to animate the particle fields in
pd_ladders.map.

Entity Details

trap_spikeshooter use a trigger_mulitple to fire

trap_shooter fires continuously (use killtarget to stop)

trap_shooter_switched toggle on and off with triggers, buttons

func_door
Setting cnt to 1 will not remove keys from the player’s inventory, which mimic’s the key behavior
of Doom. Make sure and add this key / value to all doors and let the player know the default key
behavior has changed. e.g. Perhaps a pickup message on the key that reads: “This key works
on many doors.”

Usually, key doors will remain open after use. However, func_door has a new spawnflag called
Doom-style unlock that will close the door after unlocking it. Setting this spawnflag will set the
door to cnt 1 automatically, retaining the key in the player’s inventory.

func_explobox
An explosive brush entity. Works just like misc_explobox but is made from a brush you create
as opposed to the default model.

func_fall
A brush that drops and fades away when touched and/or triggered. Add some spice to your
jumping puzzles or other scripted sequences! Monsters will not trigger func_fall but will be
gibbed if one falls on them. NOTE: When a func_fall brush touches another brush or entity it will
stop, which can look odd in certain situations. noise = sound to play when triggered, the default
is a switch sound. wait = wait this long before falling. Use the DONT_FADE spawnflag if
desired.

func_fall2
This is an enhanced version of func_fall that has different properties than the original and a lot
more overall functionality. For example, func_fall2 will not gib monsters but you can set them to
trigger it unlike the original. These take a bit of set up, so refer to pd_prefab_func_fall2.map for
more information and examples you can modify for your maps.

When using the avelocity key add an origin textured brush at the point you want the brush to
rotate around. This brush must be part of the func_fall2 brush entity. In TrenchBroom you would
control click both brushes and then right click to make them a func_fall2.

Key Details

wait how long until the brush begins falling

noise the sound to make when touched / activated

noise2 the sound to make before it's removed,
pain_finished of -1 disables noise2 as the
object stays forever

cnt 0 is default behavior, 1 means collisions are
disabled while falling, 2 turns the brush into a
bouncing entit

pain_finished default of 0.01, higher value has the
object/brush fade out faster thus in turn
affecting how long it stays. -1 stays forever

speed speed as to how fast something falls per game
frame, default is 10, higher values mean faster
falling. Only for cnt of 1. Recommended to use
lip for max fall speed with cnt 0 and 2 as they
follow Quake's default gravity

lip maximum fall speed that can be achieved, caps
'speed' variable. Default is -800

avelocity brush spins when activated using X, Y, Z vector
coordinates. cnt of 2 ignores avelocity. Use an
origin brush at the center of your brush(es) for
proper spin!

spawnflags Player or Monster only flags

func_togglewall
Creates an invisible wall that can be toggled on and off. START_OFF spawnflag means the wall
doesn't block until triggered. noise is the sound to play when the wall is turned off. noise1 is the
sound to play when the wall is blocking. dmg is the amount of damage to cause when touched.
You can see an example of this in the pd_ladders example map above the barred teleport area.

func_train
Just like the standard Quake train entity but with the RETRIGGER spawnflag set the train will
stop at each path corner and wait to be retriggered before moving again. This will be great for
more complicated lifts, doors and of course… trains. Set the sounds key to 3 to use custom
sounds, then set noise3 as the start/stop sound and noise4 for the “in motion” sound.

func_laser
A togglable laser, hurts to touch, can be used to block players. START_OFF: Laser starts off.
LASER_SOLID: Laser blocks movement while turned on. Keys: dmg damage on touch. default
1 alpha approximate alpha you want the laser drawn at. default 0.5. alpha will vary by 20% of
this value. message message to display when activated message2 message to display when
deactivated.

Use fullbright textures with func_lasers to ensure they stand out against darker
backgrounds. Kreathor’s Prototype wad has a good selection.

http://khreathor.xyz/site/prototype/

Lightning
ltrail_start
ltrail_relay
ltrail_end

These lightning trail entities can be used for traps, decoration or for other scripted events. For
the example below there are two entities. ltrail_start and ltrail_end, they are targeting each
other.

If you want a chain of lightning events you would use a number of ltrail_relays between the start
and end targeting one to the other, much like you would a path_corner with a func_train.

NOTE: The key / values are weirdly named in these entities. This is a quirk of QuakeC, where
coders try to limit the amount of fields used by “recycling” unused fields to save memory.

ltrail_start Starting point of a lightning trail. Set currentammo to the amount of damage you
want the lightning to do. Default is 25. Set frags to the amount of time before the next item is
triggered. Default is 0.3 seconds. Set weapon to the amount of time to be firing the lightning.
Default is 0.3 seconds. Set sounds to 1 for no sound. (Yes, it is weird.) Set the TOGGLE
spawnflag if you want the lightning shooter to continuously fire until triggered again. Set the
START ON spawnflag to have the lightning shooter start on. Do NOT use both these
spawnflags at once.

ltrail_relay Relay point of a lightning trail. Set currentammo to the amount of damage you want
the lightning to do. Default is 25. Set frags to the amount of time before the next item is
triggered. Default is 0.3 seconds. Set weapon to the amount of time to be firing the lightning.
Default is 0.3 seconds Unfortunately, ltrail_relay entities cannot be set to silent.

ltrail_end Ending point of a lightning trail. Does not fire any lightning. Set frags to the amount of
time before the next item is triggered. Default is 0.3 seconds.

NOTE: To have a continuously firing bolt between two points, have a ltrail_start and ltrail_end
targeting each other in a loop and set frags to -1. The sound this makes is not ideal, so consider
making these silent and use a play_sound_triggered with a custom looping sound. This is
shown in the pd_lasers sample map. In the devkit, sounds/dump/elec22k.wav is included for this
very reason.

gib_(classname)
Easily add these bloody decorations to your map. (Also see monster_dead_(classname) below.
You can use the SOLID spawnflag to enable collision on the model but clip brushes will work
even better.

If you are using TrenchBroom take extra care when rotating these entities. The way
TrenchBroom handles rotations for custom models requires a work around in some cases. If you
want to simply rotate the gib model around the z axis there is no problem. However, if you wish
to rotate the model in the X and Y or any combination, you will need to manually type in X Y and
Z values before using the rotate tool. To do this, use the angles key (with an s) and type in
something like 0 45 0 as the values. Then you can select the rotate tool and adjust the other
values using the widget. Keep in mind the values 0 0 0 will not work. Also the angle key (no s)
should be blank or set to 0 when using the angles key.

monster_dead_(classname)
e.g. monster_dead_ogre More decorations for your maps. You can use the SOLID spawnflag to
enable collision on the model but clip brushes will work even better. Keep in mind the same
issue with rotation mentioned above applies to these models as well.

Worldspawn
Features a reset_items key (default 0). Set to 1 to make the player start with default shotgun
and axe. Set to 2 for an axe only start.

light_candle
A simple light emitting candle from Mission Pack 2. You can place them into the ground for
shorter varieties.

Ladders

trigger_ladder
Create a small trigger_ladder brush covered with the trigger texture. Make sure the outside
edge of the brush is flush with your ladder geometry. Set the angle key to the direction the
player is facing when approaching the ladder. You can use a wedge shaped clip brush to
smooth out any “sticky” movements at the top of the ladder as seen below. Please refer to
pd_ladders.map for examples.

Breakables

func_breakable
Breakables may seem overwhelming to new mappers, however it’s not as complicated as it
looks. Also, there are two methods to choose from. One is the Built-in (easy) method and the
other is the Custom method (more flexible.)

The Built-in method: Create your brush and make it a func_breakable. You can ignore any
keys that begin with brk or breakable. Those are used with the custom method. With the built-in
method you will set the style to one of thirty-two options listed below. By default, the breakable
spawn 5 pieces of debris. You can change this amount with the cnt key/value. The default
health of the brush is 20.There are placeholder sounds but you can use the noise1 key to set a
custom sound path. If you give the breakable a targetname it will only break when triggered.
Use the Explosion spawnflag for an explosive brush. Use the dmg key to set a custom damage
value. You can also use the No Monster Damage spawnflag to keep monsters from breaking
the brush. As with monsters, you can use the drop_item key to spawn a Silver or Gold key, vial
or armor shards upon breaking.

Style Texture basis Image Description

0 custom

Green Metal (default)

1 custom

Red Metal

2 custom

Concrete

3 wood1_1

Pine wood

4 wizwood1_3

Brown wood

5 dung01_2

Red wood

6 window02_1

Stained Glass Yellow Flames

7 window01_4

Stained Glass Red Rays

8 window01_3

Stained Glass Yellow Dragon

9 window01_2

Stained Glass Blue Dragon

10 window01_1

Stained Glass Red Dragon

11 cop2_3

Light Copper

12 cop1_1

Dark Copper

13 wiz1_4

Tan Bricks Large

14 wbrick1_5

Brown Bricks Large

15 wswamp2_1

Green Bricks Large

16 tlight08

Generic Light Brown

17 comp1_5

Red Brown Computer

18 comp1_1

Grey Black Computer

19 metal4_5

Blue Green Metal

20 metal4_4

Blue Green Runic Wall

21 metal2_2

Brown Metal

22 metal1_3

Dark Brown Metal

23 metal1_2

Medium Brown Metal

24 m5_8

Blue Metal

25 city8_2

Green Stonework

26 city6_7

Blue Stonework

27 city2_8

Brown Bricks

28 city2_7

Tan Blue Bricks

29 city2_1

Red Bricks

30 city2_5

Blue Bricks

31 wizmet1_2

Metal Rivets

The Custom Method: This method uses external, custom models (.mdl format) or brush
models (.bsp format) instead of the built-in system. You can make small pieces of debris by
shaping them in a level editor and compiling them into a .bsp (See Creating Debris below.)

You can also use .bsps from other mods (check if you have permission to do so.) In the
example below, we are only using one piece and duplicating it when the brush is “broken.” Set
the Use custom mdls or bsp models spawnflag to enable this mode. Then set the path to the
.bsp or model in break_template1. The brk_obj_count1 determines how many instances of that
bsp will be used. You can have 5 different pieces of debris total (break_template1-5) and control
how many instances each of those templates spawns with brk_obj_count1-5. noise1 is the path
to the sound when breaking. Style and cnt are not used in this method but health and dmg are.

Creating debris

You can create break_templates as tiny maps and compile them into bsps. Create one piece at
a time as their own map file. Create the debris at the center of the map (origin 0, 0, 0) Compile
with qbsp.exe and light. No need to run vis.exe on these. You can add a light key/value to the
Worldspawn to uniformly light the piece of debris.

Place these pieces in your maps folder or a subfolder under maps called debris or breakables
and remember to include these when you distribute your map.

If you want debris to fall during an earthquake or similar event, use a skip texture to
create an invisible breakable. Make sure the player cannot touch the brush, as skip
textured brushes have collision. Clip textures won’t work for this. You can see an
example of this in the pd_bosses sample map.

Effect Entities
You can trigger the following visual effects.

Effect Details

play_explosion
grenade explosion, causes damage

play_spawnexpl
Spawn death explosion, causes damage

play_lavalsplash
large particle effect, can have custom sound

play_brlight
Toggles a bright lighting effect on or off.

play_dimlight
Toggles a lighting effect on or off.

play_mflash
When triggered, it plays a brief muzzle flash effect.

play_brfield
When triggered, toggles a spherical yellow particle effect.

play_gibs
When triggered, it plays gib effects and sound. Same as
meat_shower from earlier versions. See an example of
meat_shower used with a func_counter in pd_meat.map

When triggered this entity will spawn a shower of gibs. style = 0 is
regular gib effect, 1 is more violent fly_sound = 0 is silent, 1 plays
randomized gib sounds targetname = Must be triggered

play_tele
When triggered, shows the teleport particle effects and sound.

Same as tele_fog from earlier versions. Use this when killtargeting
an entity if the player can see it happen. You can see an example
on the Shambler near the trigger_use key entity in The Gallery
map.

tele_fog, play_tbabyexplode and meat_shower have been deprecated and renamed.
The QuakeC code is still present for backward compatibility but the entities have been
removed from the FGD.

func_bob
This will create a brush that gently moves back and forth or up and down depending on the
angle. Use targetname to trigger it on, angle is direction movement, use "360" for angle 0
height direction intensity (def=8) count = direction cycle timer (def=2s, minimum=1s)
waitmin = Speed up scale (def=1) 1+=non linear, waitmin2 = Slow down scale (def=0.75)
delay = Starting time delay (def=0, -1=random) style If set to 1, starts off and waits for trigger
_dirt -1 = will be excluded from dirtmapping, _minlight = Minimum light level for any surface of
the brush model, _mincolor = Minimum light color for any surface (def='1 1 1' RGB)
_shadow = Will cast shadows on other models and itself, _shadowself = Will cast shadows on
itself. Use the BOB_COLLISION spawnflag for solid and conversely, BOB_NONSOLID.

misc_bob
Same as above but uses a custom model instead of a brush. Use the mdl key to set the path of
the model. There’s a quirk in TrenchBroom that will not display the model in its proper
orientation once you set the angle key as seen here. This is only in the editor, in-game the
model will be correct.

Lights

Switchable Light Styles
Normally, if you apply a style to a light (e.g. candle flicker, strobe) those cannot be triggered on
and off. However, progs_dump has this ability, borrowed from c0burn’s in-progress Slipgate
mod. Just choose a style2 selection from the dropdown and target the light as normal. Use the
START OFF spawnflag if needed.

Select the FADE IN / OUT spawnflag for a smooth fade in / out effect on non-animated lights.
The speed key controls the light transition time. Default 0.1

Fades will not work on animated lights (e.g. style or style2).

light_torch_small_walltorch
Just like monsters and items, you can replace the model on this entity to make it easier to mix
and match different light sources. Use the mdl_body and skins keys as you would with custom
monsters and items. Use the silent spawnflag to disable the crackling fire sound if you want a
custom sound. In this case, you’ll want to use an ambient_general entity near the lightsource
with a looping sound file.

Particle Effects

misc_sparks
Produces a burst of yellow sparks at random intervals. If targeted, it will toggle between on or
off. If it targets a light, that light will flash along with each burst of sparks. NOTE: targeted lights
should be set to START_OFF. Spawnflags = SPARKS_BLUE: sparks are blue in color
SPARKS_PALE sparks are pale yellow in color. wait is the average delay between bursts
(variance is 1/2 wait). Default is 2. cnt is the average number of sparks in a burst (variance is
1/4 cnt). Default is 15. sounds 0 = no sound, 1 = sparks TIP: target a play_sound_triggered for a
custom sound

misc_particle_stream
A particle stream! It appears when triggered. This entity is one end of the stream, target
another entity as the other end-point. Usually an info_notnull, but you should be able to target
anything (like monsters). target = This entity's origin is the end-point of the stream dmg = 1st
Color, use this by itself if you want a single color stream cnt = 2nd Color, mixes particles of both
colors. noise = Sound to play when triggered. See color palette reference below. NOTE: You
can see this in action in the pd_counter sample map and at the end of the pd_lasers map.

func_particlefield
Creates a brief particle flash roughly the size of the defining brush each time it is triggered. You
can see an example of this in the pd_ladders example map. In this case, the particle fields are
animated in sequence to create a force field effect. USE_COUNT when the activator is a
func_counter, the field will only activate when count is equal to cnt. Same as using a
func_oncount to trigger. cnt is the count to activate on when USE_COUNT is set. color is the
color of the particles. Default is 192 (yellow). count is the density of the particles. Default is 2.
noise is the sound to play when triggered. Do not use a looping sound here. dmg is the amount
of damage to cause when touched.

If you want to use another color for the particle field, refer to the Quake color palette below
NOTE: not all colors will work:

misc_particles
Produces a continuous particle splash for waterfalls and other effects. Can be triggered and
toggled. Spawnflags = START_OFF The default behavior has the particles shimmering in an
upward motion. color = color of particles. 0 through 15, corresponds to a row of the quake
palette (see above for palette numbers). (default 0) movedir = average movement vector of
particles (default 0 0 4) NOTE: Play with negative numbers to change the movement direction.
wait = time between particle generation cycles. (default 0.1) volume = density of particles.
(default 10)

misc_particlespray
Shoots particles either when triggered, or continuously when not triggered by anything.
color is the palette color of the particles. (default 47) movedir is the vector distance that the
particles will travel before disappearing. (in x y z) NOTE: Play with negative numbers to change
the movement direction. delay is the delay between each triggering (default 0.1) duration is the
amount of time that it will continue to release particles so that it can release a long stream of
particles with only one triggering, count is the number of particles to make each time (default 15)
noise is the name of the .wav file to play when triggered.

The two particle effects above are similar but there are some key differences. Take a look at the
pd_counter map for some different examples.

You can check out this video tutorial that goes into detail on most of the particle effects above.

https://youtu.be/7-1W6oF6KH4

Cutscenes

The cutscene system is taken from the Drake
mod beta devkit. Scenes take a bit of testing
and tweaking to set up, so please read this
section carefully if you want to include them
in your projects. One missing key | value or
typo will blow up the whole operation! It’s
best to start with a small test level and
learn how they work before moving
forward. Also play very close attention to the
“best practices” section below!

NOTE: unlike many Quake entities, there are
key | value pairs that are required to be set
even though they may not seem to do
anything.

Your first step should be to play the sample
map pd_cutscenes, then open the map in
your map editor and take a look at the
different setups. There’s a secret area of the
map that shows the most simple setup, with
one message and one camera. There are
also three other, more complex setups in the
map. Cutscenes can be skipped by pressing
a weapon key or any impulse command.

There are a minimum of four entities
required to make a cutscene work.

First, a trigger_camera that the player will
enter to begin the scene. You can also use a
trigger_camera_point if you need to trigger
your scene without the player touching the
trigger. You will see both methods in the
sample map.

The second required entity is an
info_movie_camera. This will “aim” the
camera at the third required entity: an
info_focal_point.

The fourth required entity is an info_script.
This controls how long the player is in the
scene, triggers events and holds any text
messages that will play during the cutscene.

http://www.quaketastic.com/files/single_player/mods/drakebeta.zip
http://www.quaketastic.com/files/single_player/mods/drakebeta.zip

trigger_camera
This will begin a cutscene when touched. Some of these keys need to match the corresponding
fields in the targeted info_movie_camera and info_script. IMPORTANT: most of the following
keys are required unless noted.

info_movie_camera
This is the target of the trigger_camera and controls the viewport of the cutscene. When using
multiple cameras in a sequence, you need at least three cameras (see “complex cutscenes”
below).

Key Details

focal_point Point the targeted camera at this point.

script Match script_num field of the info_script

script_delay The amount of time to stay on the first script
page. NOTE: You can usually set this to 1
because the script_delay key of the matching
info_script will override this value.

target Targetname of the first camera in the
cutscene.

targetname (optional) If the trigger_camera has a targetname, it will
be dormant until triggered.

Key Details

focal_point Point the camera at this point.

targetname The name of this camera.

delay (optional) When the camera moves, don't track the
focal_point’s position, keep the initial view
angle.

speed (optional) This controls the rate of travel to this camera
in (Quake units per second) from another
camera.

wait (optional) Wait here in seconds, before moving to next
camera if part of a sequence

target (optional) targetname of the next info_movie_camera in
a sequence.

info_focal_point
This is the point that the camera will face. It should have a targetname value matching the
camera_trigger and info_movie_camera’s focal_point fields. When using multiple cameras the
focal points can change (see “complex cutscenes” below).

info_script
This controls the on-screen timing and the optional message text fields.

info_script_sound
You can use this optional entity to add a sound when text is displayed or you can even trigger
custom sounds and add dialogue to your scenes!

Key Details

script_num This should match the script field of the
trigger_camera or trigger_camera_point.
IMPORTANT: Every script_num in a map
needs to be unique!

next_script This is the script_num field of the next
info_script, if part of a sequence. Set to zero
if this is the last script in a series.
IMPORTANT: This value must be set by
hand even if the number is zero! This is
unlike almost every other entity field in Quake
mapping! Your cutscene will fail without this
set.

script_delay How many seconds to stay on this script. This
overrides the same key on trigger_camera.

message (optional) Optional text that will stay on screen for the
amount of time set in script_delay. It’s safest
to limit this to a max of 64 characters.

target1-4 (optional) Use these fields to trigger other events in
time with the current script. Use
trigger_relays if you need to killtarget
something.

Key Details

sounds Default Quake sounds for messages. Select
4 if you want to use a custom sound file.

noise1 Path to custom sound file. Requires sounds
key set to 4.

targetname Name of entity. You can use this multiple
times in the same level but note the sound is
directional.

Creating a Simple Cutscene
Create a trigger_camera brush and give it these key | values:

Next add an info_movie_camera and give it these key | values:

Notice they both have the same focal_point key. Now create that info_focal_point give it these
key | values:

Now for the info_script. Note the script_num matches the script key from trigger_camera. The
next_script value is set by hand to zero, this is really important to add or your cutscene will
break! It’s set to zero, because it’s the last script of the scene.

The length of the scene is controlled by the script_delay key in the info_script. Leave the
message key blank if you just want a shot without text. Now you can move the focal point and
camera around for your desired “angle”. The following screenshots show in-editor and then the
in-game vantage points.

Complex Cutscenes
You can add more cameras, scripts and focal points for a more complex scene. You can also
animate the camera from one point to another but getting good looking “shots” takes a bit of
time and tinkering.

I’ve created smaller demo levels for easy reference in addition to the pd_cutcenes map. These
maps are not accessible from the progs_dump start map but you can load them via the console.

Here’s what each map demonstrates:

Map Name Details

pd_cutscn_simple A static camera, one message scene.

pd_cutscn_tracking Animated camera between two points with
two messages and a blank script between
them for timing.

Notice how the delay key is set on all the
cameras and only one focal point is needed.
This makes each camera focus in the same
direction for each move.

pd_cutscn_cuts Scene that “cuts” between three vantage
points, with three separate focal points.

Notice how the speed key is set to 999999 to
make the move nearly instantaneous.

You may still see a “flash frame” between the
edits here. There’s no real way around this.

When moving the camera, even between just two points, you will need three
info_movie_cameras. (This is due to some quirks in the original QuakeC and took me a long
time to figure out!) If you only want two vantage points in your scene, simply use the wait key
on the second to last camera. Set this to a longer amount of time than is controlled by the
script_delay key in your info_script for that section of the cutscene. You can see this clearly in
pd_cutscn_tracking and in pd_cutscenes.

Cutscene Best Practices

● Make small test maps to set up your cutscenes. Scenes require a lot of testing and
tweaking. When they are working, paste them into your map and adjust as needed.

● Do not quit the game while in a cutscene, this will reset your mouse sensitivity and console
viewsize. Add this info in the readme for your mod so players know not to quit!

● Keep your cutscenes as simple as possible. Things can break very quickly as you ramp up
the complexity.

● Timing is controlled in two places when using multiple cameras. (script_delay in info_script
and wait in info_movie_camera) That makes it harder to make small changes. Break up
longer sequences up into smaller parts.

● If you move the camera, keep the move on the same axis as the focal point. Any panning or
tilting of the viewport will cause the screen to judder. It looks terrible and should be avoided.

● Camera moves in X and Y will display a bit of “player bob”. Play with the speed key to make
the move faster and it won’t be as apparent.

● As in other Quake entities, you can add a line break in a message by adding \n with no
space before the text of the second line. Here I’ve added two to make a blank line between
sentences.

● Do not reuse info_scripts for different cutscenes. Things will break. You can reuse
info_movie_cameras as long as they are triggered by different trigger_camera entities.

● As mentioned above, info_script_sound entities can be reused. Be aware that because the
way Quake handles audio, the sound direction can change depending on where the entity is
in relation to the camera. If you have sound coming from only one direction center the
info_script_sound on the focal point of the camera.

● Don’t over do it. Quake is a fast paced game. Few players want to watch a three hour
Quake movie with terrible voice acting!

Rotation Entities

func_rotate_entity
Creates an entity that continually rotates. Can be toggled on and off if targeted. TOGGLE =
allows the rotation to be toggled on/off START_ON = whether the entity is spinning when
spawned. If TOGGLE is 0, the entity can be turned on, but not off.

If "deathtype" is set with a string, this is the message that will appear when a player is killed by
the train. "rotate" is the rate to rotate. "target" is the center of rotation. "speed" is how long the
entity takes to go from standing still to full speed and vice-versa.

path_rotate
(Train with rotation functionality) Path for rotate_train. ROTATION tells the train to rotate at a
rate specified by "rotate". Use '0 0 0' to stop rotation. ANGLES tells the train to rotate to the
angles specified by "angles" while traveling to this path_rotate. Use values < 0 or > 360 to
guarantee that it turns in a certain direction. Having this flag set automatically clears any
rotation. STOP tells the train to stop and wait to be retriggered. NO_ROTATE tells the train to
stop rotating when waiting to be triggered. DAMAGE tells the train to cause damage based on
"dmg". MOVETIME tells the train to interpret "speed" as the length of time to take moving from
one corner to another. SET_DAMAGE tells the train to set all targets damage to "dmg" "noise"
contains the name of the sound to play when the train stops. "noise1" contains the name of the
sound to play when the train moves. "event" is a target to trigger when the train arrives at
path_rotate.

func_rotate_train
In path_rotate, set speed to be the new speed of the train after it reaches the path change. If
speed is -1, the train will warp directly to the next path change after the specified wait time. If
MOVETIME is set on the path_rotate, the train interprets "speed" as the length of time to take
moving from one corner to another. "noise" contains the name of the sound to play when the
train stops. "noise1" contains the name of the sound to play when the train moves. Both "noise"
and "noise1" defaults depend upon the "sounds" variable and can be overridden by the "noise"
and "noise1" variable in path_rotate.

Also in path_rotate, if STOP is set, the train will wait until it is retriggered before moving on to
the next goal.

Trains are moving platforms that players can ride. "path" specifies the first path_rotate and is the
starting position. If the train is the target of a button or trigger, it will not begin moving until
activated. The func_rotate_train entity is the center of rotation of all objects targeted by it.

If "deathtype" is set with a string, this is the message that will appear when a player is killed by
the train. speed (default 100) dmg (default 0) sounds 1 = ratchet metal

By request, the Hipnotic (Quake Mission Pack 1) rotation entities have been added but are
unsupported. They should work, but are untested, so use at your own risk! (Other mappers
have used these without issue). The text below is taken from the Quake C code for the
rotation system. Refer to the included sample map pd_rotate for examples. Enjoy!

func_movewall
Used to emulate collision on rotating objects. VISIBLE causes brush to be displayed. TOUCH
specifies whether to cause damage when touched by a player. NONBLOCKING makes the
brush non-solid. This is useless if VISIBLE is set. "dmg'' specifies the damage to cause when
touched or blocked.

rotate_object
This defines an object to be rotated. Used as the target of func_rotate_door.

func_rotate_door
Creates a door that rotates between two positions around a point of rotation each time it's
triggered. STAYOPEN tells the door to reopen after closing. This prevents a trigger-once door
from closing again when it's blocked. "dmg" specifies the damage to cause when blocked.
Defaults to 2. Negative numbers indicate no damage. "speed" specifies how the time it takes to
rotate "sounds" 1 = medieval (default), 2 = metal, 3 = base 4 = silent

Sample maps
You can find these in the development folder along with a wad file containing all the textures
used. You are welcome to copy and paste the entity setups and adjust as needed to use them
in your maps. Please do not copy brushes or geometry from these maps. The following chart
shows what examples exist in each map. Not all entities are demonstrated in the sample maps.
Prefab maps are more simple in presentation, but are specifically designed for you to copy and
paste more complex setups.

Map Entity Setup Examples Notes

pd_breakables func_breakable, misc_candle

pd_counter func_counter, func_oncount,
misc_particle, misc_particle_stream,
misc_particlespray

pd_cutscenes trigger_look, info_movie_camera,
info_focal_point, info_script,
info_script_sound, trigger_changemusic,
trigger_cdtrack

pd_elevator func_new_plat, func_elvtr_button

pd_ladders trigger_ladder, func_particlefield,
misc_sparks, func_breaklable,
func_togglewall

pd_lasers func_laser, ltrail_start,ltrail_relay,
ltrail_end, switchable light styles,
misc_particle_stream, trigger spawned
monsters

Can you find the YA secret?

pd_lightning func_counter, ltrail_start,ltrail_relay,
ltrail_end, trap_switched_shooter

pd_lava play_lavasplash, func_fall,
trigger_shake, misc_particle, func_train
(triggered)

pd_meat meat_shower, func_counter, gib_*,
monster_dead_*

pd_void func_bob, suspended items, trigger
spawn items, func_breakables

pd_zombies func_counter, func_oncount, enhanced
zombies, trigger spawned monsters

pd_rotate func_rotate_entity, path_rotate,
func_rotate_train, func_movewall,
rotate_object, func_rotate_door

This is Hipnotic’s original sample
map. Slight changes to lighting
and renamed.

pd_ionous is_waiting, trigger spawned monsters from 1.0.0

pd_yoder trigger_push_custom, multiple trigger
names, trigger_setgravity

from 1.0.0

pd_gallery all entities from version 1.0.0 from 1.0.0

pd_gravity trigger_setgravity, trigger spawned
monsters

from 1.0.0

pd_keys item_key_custom currently no entrance for this in
the start map

pd_bosses (killable bosses) monster_oldone2,
monster_boss2, item_backpack,
func_fall2, invisible func_breakable,
play_mflash, misc_particlestream,
play_sound_triggered, ambient_fire

pd_change_dest info_teleport_changedest,
info_teleport_random, play_tele,
trigger_shake, misc_sparks,
play_sound_triggered, misc_teleporttrain

prefab_ammo_backpack item_backpack This shows how you can use an
item_backpack to mimic ammo
boxes. You can set custom
ammo, re-name the ammo. This
offers more options than
standard ammo.

prefab_func_fall2 func_fall2 Shows off most setups with lots
of variations.

Credits

QuakeC Sources

misc_model.qc, math.qc by Joshua Skelton
https://gist.github.com/joshuaskelly/15fe10fbaaa1bf87b341cba6e3ad2ebc

Trigger Spawned Monsters added via Preach’s excellent tutorial:
https://tomeofpreach.wordpress.com/2017/10/08/teleporting-monsters-flag/

various .qc from custents by Carl Glave
http://www.quaketastic.com/files/tools/windows/quakec/custents.zip

various .qc from Hipnotic’s Quake Mission Pack Scourge of Armagon
Original Code written by Jim Dose and Mark Dochtermann
http://www.quaketastic.com/files/tools/windows/quakec/soa_all.zip

various .qc from Rogue’s Quake Mission Pack Dissolution of Eternity
Original Code written by Peter Mack et al.
http://www.quaketastic.com/files/tools/windows/quakec/doe_qc.zip

Preach’s clean Quake 1.06 source courtesy of Joel B
https://github.com/neogeographica/quakec/tree/1.06_Preach

various .qc from Rubicon Rumble Pack Devkit by ijed / Louis
http://www.quaketastic.com/files/single_player/mods/RRP_DEVKIT.zip

Arcane Dimensions breakable and music code by Simon O’Callaghan et al.
http://www.simonoc.com/pages/design/sp/ad.htm

Honey source by czg
https://www.quaddicted.com/reviews/honey.html

Zerstörer QuakeC Development Kit - Dave 'Ace_Dave' Weiden and Darin McNeil
https://www.quaddicted.com/reviews/zer.html

various .qc code from Rubicon 2 copyright 2011 John Fitzgibbons.
https://www.quaddicted.com/reviews/rubicon2.html

deadstuff version 1.0 - Tony Collen
ftp://archives.gamers.org/pub/idgames2/quakec/level_enhancements/deadstuf.zip

Remake Quake code by Supa, ijed and (?)
https://icculus.org/projects/remakequake/

switchable lightstyles and DEF entries from Slipgate by Michael Coburn
https://github.com/c0burn/Slipgate

https://gist.github.com/joshuaskelly/15fe10fbaaa1bf87b341cba6e3ad2ebc
https://tomeofpreach.wordpress.com/2017/10/08/teleporting-monsters-flag/
http://www.quaketastic.com/files/tools/windows/quakec/custents.zip
http://www.quaketastic.com/files/tools/windows/quakec/soa_all.zip
http://www.quaketastic.com/files/tools/windows/quakec/doe_qc.zip
https://github.com/neogeographica/quakec/tree/1.06_Preach
http://www.quaketastic.com/files/single_player/mods/RRP_DEVKIT.zip
http://www.simonoc.com/pages/design/sp/ad.htm
https://www.quaddicted.com/reviews/honey.html
https://www.quaddicted.com/reviews/zer.html
https://www.quaddicted.com/reviews/rubicon2.html
http://archives.gamers.org/pub/idgames2/quakec/level_enhancements/deadstuf.zip
https://icculus.org/projects/remakequake/
https://github.com/c0burn/Slipgate

cutscenes and various .qc from Drakebeta by Patrick Martin
http://www.quaketastic.com/files/single_player/mods/drakebeta.zip

trigger_look by NullPointPalidin
https://nullpointpaladin.wordpress.com/

Copper style noclip from Copper by Lunaran
http://lunaran.com/copper/modding/

Nailgun origin fix from Seven and Sajt, courtesy of Greenwood.
http://shub-hub.com/files/mods_singleplayer/NailgunNailPosition.zip

Additional code assistance and examples from iw, NullPointPaladin Qmaster, RennyC,
Khreathor, Spike, ILike80sRock and c0burn.

A note about key | value pairs. You may notice some strange naming of key fields in
progs_dump. For example, to select spawn silent for a monster you set the wait key.
Another example is the currentammo in a lightning trail relay representing damage.
This is because some of the code in progs_dump is from a time when the memory
requirements for Quake were high for PCs of the day. Programmers would reuse
certain keys to save memory, as each key field took up precious RAM. 20 years later
we have plenty of processing and RAM to dispose of. As a result, some of the newer
keys are a bit more intuitive.

http://www.quaketastic.com/files/single_player/mods/drakebeta.zip
https://nullpointpaladin.wordpress.com/
http://lunaran.com/copper/modding/
http://shub-hub.com/files/mods_singleplayer/NailgunNailPosition.zip

Maps

Celeritate satus
start map by Danz

Eigenstate and Ineffable Crown of Darkness
pd_gravity & pd_ionous voice.of.the.nephilim@gmail.com
 @voiceovnephilim

Magic River
pd_yoder by Yoder AndrewYoder@live.com
@Mclogenog

maps by dumptruck_ds and iw:

progs_dump Q logo by D.E.F.A.M.E. https://defameart.com/

pd_breakables pd_meat

pd_counter pd_meat

pd_elevator (by iw) pd_void

pd_gallery pd_zombies

pd_ladders pd_keys (by iw)

pd_lasers pd_cutscenes

pd_lava pd_bosses

pd_lightning pd_change_dest

mailto:voice.of.the.nephilim@gmail.com
mailto:AndrewYoder@live.com
https://defameart.com/

Appendices

Appendix A: Included Assets
Here’s a list of assets that are included in the mod with credits.

Models

Asset Name Details Credits

pd_bpack.mdl Revised backpack model and new skins starshipwaters

candle.mdl candle Quake Mission Pack 2
Dissolution of Eternity
(a.k.a.The Rogue Mission
Pack or DOE)

mervup.mdl multi-grenade same as above

lspike.mdl laval spike same as above

debris.mdl model for breakables from Rubicon 2 with edits
by dumptruck_ds

g_shotgn.mdl shotgun model from Rubicon2 by
metlslime

g_shotty shotgun model created by Slapmap

spark.mdl spark particle from Rubicon2 by
metlslime

s_null.spr empty sprite for various effects from Quoth

h_boss.mdl Chthon head based on original boss.mdl by c0burn with edits by
Khreathor

s_flame.spr animated fire sprite based on FireB sprites
from Duke Nukem 3D

spike.mdl based on id original added lava skin from DOE
to original model

pd_armor_sh.mdl armor shard by Ijed from Remake
Quake with skin edits by
dumptruck_ds

pd_base_key.mdl key based on id original skins by dumptruck_ds

pd_rune_key.mdl same as above same as above

pd_wiz_key.mdl same as above same as above

soldier.mdl based on id original modded skins by
dumptruck_ds

https://www.artstation.com/starshipwaters

Sounds

ogre.mdl

based on id original mission pack 2 with some
skins by dumptruck_ds

h_ogre.mdl based on id original mission pack 2

enforcer.mdl

based on id original with 2 skins by Ijed from
ReMakeQuake and
additional skins by
dumptruck_ds

m_h15.mdl rotten healthpack model by Lunaran from Copper

m_h25.mdl normal healthpack model same as above

m_h100.mdl mega healthpack model same as above

pd_vial.mdl health vial model from Hexen II with edits
and skins by dumptruck_ds

m_cells1.mdl box of cells by Lunaran from Copper

m_cells2.mdl large box of cells same as above

m_nails1.mdl box of nails same as above

m_nails2.mdl large box of nails same as above

m_rock1.mdl box of rockets same as above

m_rock2.mdl large box of rockets same as above

m_shell1.mdl box of shells same as above

m_shell2.mdl large box of shells same as above

Asset Name Details Credits

pd_bricks.wav
pd_metal1.wav
pd_metal2.wav
pd_stones1.wav
pd_wood1.wav
pd_wood2.wav

hard coded breakable sounds dumptruck_ds

water_59_02.wav Underwater sound dumptruck_ds

elec22k.wav looping electricity sound public domain Freesound
(link lost)

rumble.wav earthquake sound (not great
quality)

Rogue mission pack

pd_armor1_sh.wav armor shard pickup sound modified id sound

pd_magic_01.wav looping magical hum dumptruck_ds (using Virtual
ANS)

pd_quake_loop1.wav
pd_quake_full.wav
pd_quake_end.wav

better quality earthquake
sounds

public domain FreeSound.org

spark.wav hard coded for misc_spark from the Rubicon2 mod

pd_pop2.wav new pain sound for killable
Shub

modified id sound

https://www.warmplace.ru/soft/ans/
https://www.warmplace.ru/soft/ans/
https://freesound.org/people/craigsmith/sounds/438690/

Appendix B: Finding Custom Models
As this manual is being written, Quake is entering its 25th year. Over those years, hundreds of
Quake mods have included custom models, many of which are compatible with the stock Quake
assets. Below are some of the resources we’ve used to test with progs_dump. Following that, a
short overview of how to extract models and check them for compatibility.

Don’t forget to check if you have permission to use mod assets in your projects.
Usually this is stated in the readme.

Name Type Details

The Keep mod mod A huge mod based on the Arcane Dimensions
codebase. It’s still in development as of
December 2020. This mod takes hundreds of
monsters and other assets from scores of mods
and lumps them into one giant release. This one
resource makes it really easy to find monster
replacements for the stock id creatures from a
variety of mods. More info.

Arcane Dimensions mod Features all kinds of skins for all the traditional id
monsters. Versions 1.8 and above, use PAK
files. You’ll need PakScape to extract assets. Or
use 1.7 and below for unpacked assets.

Chillo's Model Pack 1.7 mod Replacement models for almost every monster.

Quoth mod Similar to Arcane Dimensions. Some good
models and skins that are compatible with the
original monsters. Plus lots of other models and
sprites.

ReMakeQuake mod cancelled mod, assets are free to use per the
author

Drake (beta) mod Fun mod with dragons and all kinds of monster
skins and misc models.

pub/idgames2 ftp Massive directory of id related content dating
back 25+ years. Models, mods, total conversions
and more.

Quaketastic models http Another massive collection of models to peruse.

Quaketastic mods http A decent collection of Quake mods.

If you come across custom content for Quake that uses PK3 and/or MD3 files, it’s likely
that that modification will only work with the DarkPlaces engine. We don’t recommend
using DarkPlaces with progs_dump for a variety of reasons that are outside of the
scope of this manual.

https://drive.google.com/file/d/1VAFLWqU94TZZEn4bG7Fd-RHWeQqD1b5q/view?usp=sharing
https://www.celephais.net/board/view_thread.php?id=61506
https://www.moddb.com/mods/arcane-dimensions
https://www.moddb.com/mods/arcane-dimensions/downloads
https://www.moddb.com/mods/arcane-dimensions/downloads
https://www.moddb.com/mods/arcane-dimensions/downloads
http://www.quaketastic.com/files/models/chillo_1_7.zip
https://tomeofpreach.wordpress.com/quoth/
https://svn.icculus.org/remakequake/progs/
http://www.quaketastic.com/files/single_player/mods/drakebeta.zip
ftp://archives.gamers.org/pub/idgames2/
http://www.quaketastic.com/?dir=files/models/
http://www.quaketastic.com/?dir=files/single_player/mods/

Once you have a model you want to use in progs_dump you may need to extract it with
PakScape. Just open the PAK file and click on the progs folder. Drag and drop the model to
extract it. Models should be placed under the progs directory in your mod but you can use sub
folders to keep them organized.

Remember that you can also use sprites (.spr) in progs_dump with a variety of entities. And of
course, sound (.wav) files.

http://www.quaketastic.com/files/tools/windows/misc/pakscape-011.zip
https://quakewiki.org/wiki/PAK_file

Next, take a look at the animations and compare them to the original id models in Quake 1
Model Viewer using the animation tab. You can also just load the models in progs_dump and
see if they work!

https://www.moddb.com/games/quake-wrapper/downloads/quake-1-model-viewer-v050-alpha
https://www.moddb.com/games/quake-wrapper/downloads/quake-1-model-viewer-v050-alpha

Appendix C: Development Folder
The development folder in the main progs_dump mod contains the source files for the sample
maps and prefab maps, the entity definition files, a texture wad file and the QuakeC source.

fgd_def

FGD and DEF files are used by map editors to display entity information. progs_dump has four
of these files for different applications. Great care has been taken to update these files with as
much information from this manual as possible. Also, the light and worldspawn entities have
expanded definitions for ericw’s compiling tools.

If you use the pd_200_TB_custom_mdls fgd you will see custom models in TrenchBroom but
not in the entity browser. There are plans for TrenchBroom to add external files to alleviate this
limitation. You can follow that issue on GitHub here.

pd_200_TB_custom_mdls.fgd

pd_200_TB.fgd

File Details

pd_200.def Quake Definition file for use with xRadiant
editors like QuakeEd3, GTKRadiant and
NetRadiant-Custom. TrenchBroom also
supports the.def format.

pd_200_JACK.fgd Used with J.A.C.K.

pd_200_TB.fgd Used with TrenchBroom

pd_200_TB_custom_mdls.fgd Used with TrenchBroom but displays custom
models in the editor unlike the standard FGD
above.

https://ericwa.github.io/ericw-tools/
https://github.com/TrenchBroom/TrenchBroom/issues/3621
http://lunaran.com/qe3/
http://icculus.org/gtkradiant/
https://garux.github.io/NRC/
https://kristianduske.com/trenchbroom/
https://kristianduske.com/trenchbroom/
https://crystice.com/jack/
https://kristianduske.com/trenchbroom/
https://kristianduske.com/trenchbroom/

map src

This folder contains the .map files for all the sample and prefab maps as well as the custom
debris .map files as described in the custom breakables section above.

quakec scr

This folder contains the QuakeC source files for the mod. You are free to use these as a basis
for a new mod. Please give us credit and include the source files for your mod in the public
release. These QuakeC files are also included in the mod_template.zip folder and should
always be included with your mod whether you modify them or not.

wads

This is a single wad file containing all of the textures used in the sample maps. This includes
key door textures for the included pd_key models. Use this when you refer to the sample files in
a map editor. You are free to use any included texture in your own projects.

